Epileptic Encephalopathy with Continuous Spike and Wave During Sleep (EE-CSWS): Disease State Overview

©2022 Neurocrine Biosciences, Inc. All Rights Reserved.

Table of Contents

Review of Epilepsy and Developmental and Epileptic Encephalopathies (DEEs)

Epileptic Encephalopathy with Continuous Spike and Wave During Sleep (EE-CSWS)

> T-type Voltage-gated Calcium Channels and the Thalamocortical Network

Review of Epilepsy & Developmental and Epileptic Encephalopathies (DEEs)

Epilepsy is a Neurological Disorder Characterized by Unpredictable Seizures

An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal, excessive, or synchronous neuronal activity in the brain that may cause changes in the level of consciousness, movement, behavior, or memory^{1,2}

Epilepsy is defined as:

At least two unprovoked seizures occurring greater than 24 hours apart¹

OR

One unprovoked seizure and a probability of unprovoked seizure recurrence occurring over the next 10 years¹

Epilepsy occurs on a spectrum with a wide range of presentations, etiologies, and outlooks that can vary from person-to-person³

1. Fisher RS, et al. ILAE Official Report: A Practice Clinical Definition of Epilepsy. *Epilepsia*. 2014;55(4):475-82. | 2. Huff JS, Murr N. Seizure. StatPearls. Available online at https://www.ncbi.nlm.nih.gov/books/NBK430765/# NBK430765 https://www.ncbi.nlm.nih.gov/books/NBK430765/# Nacessed January 31, 2022.

Classification of Epilepsy

Epilepsies are classified by seizure type based on:

Awareness

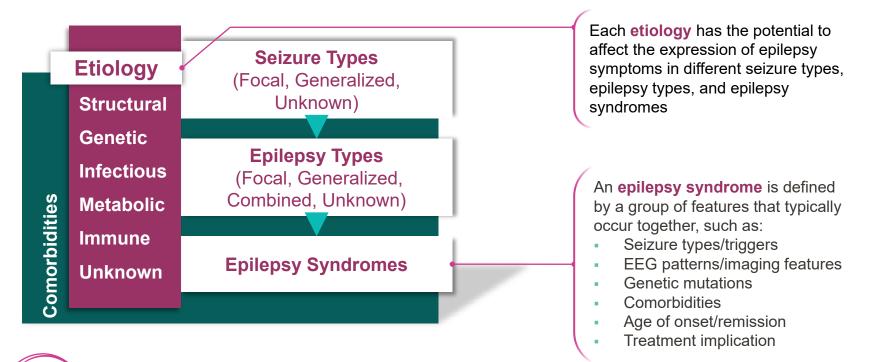
What is the level of awareness during the seizure?

Location

Where did the seizure begin in the brain?

Other

Are there other distinguishing features?


Determining etiology can optimize classification, inform treatment decisions, and aid in syndrome diagnosis

1. Scheffer IE, Berkovic S, Capovilla, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512-21.

Framework for the Classification of Epilepsies¹

The ILAE Classification of the Epilepsies is a multilevel system for classifying epilepsy in different clinical environments

Most identified single gene mutations resulting in epilepsy are ion channel mutations

EEG, electroencephalogram; ILAE, International League Against Epilepsy

1. Scheffer IE, Berkovic S, Capovilla, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512-21.

Developmental and Epileptic Encephalopathies (DEEs)*

DEEs are severe epilepsy syndromes in which epileptic activity contributes to pronounced cognitive and behavioral impairments or delays^{1,2}

Common Features of DEEs¹⁻³

- Multiple seizure types
- EEG paroxysmal activity
- Developmental regression or arrest at seizure onset
- Pharmacoresistance
- Behavioral disturbances
- Progressive psychomotor dysfunction

Many DEEs are **early-onset** (neonatal, infancy, childhood) and have a **genetic or acquired etiolog**y¹

DEE patients typically have intractable seizures and neurological deficits that can be unremitting, resulting in early death¹

*It is suggested that the term "developmental and epileptic encephalopathy" be used where appropriate: developmental encephalopathy where there is just developmental impairment without frequent epileptic activity; epileptic encephalopathy where there is no preexisting developmental delay; and developmental and epileptic encephalopathy where both factors play a role.²

EEG, electroencephalogram

1. Panayiotopoulos CP. The Epilepsies: Seizures, Syndromes and Management. Oxfordshire (UK): Bladon Medical Publishing; 2005. Available at Panayiotopoulos: https://www.ncbi.nlm.nih.gov/books/NBK2611/#ch7.s2 | 2. Scheffer IE, Berkovic S, Capovilla, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512-21. | 3. Berg, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. 2010;51(4):676-85.

Epileptic Encephalopathy with Continuous Spike and Wave During Sleep (EE-CSWS)

Epileptic Encephalopathy with Continuous Spike and Wave During Sleep (EE-CSWS)

EE-CSWS is a rare childhood-onset epilepsy syndrome characterized by an electrical status epilepticus during sleep (ESES) EEG pattern, seizures, and cognitive regression¹

EEG of child experiencing CSWS

ESES manifests as **diffuse or focal spike and wave discharges** that **appear continuous or nearly continuous** during the non-rapid eye movement (**NREM**) phase of sleep (CSWS)^{1,2}

EE-CSWS patients can also experience seizures while awake, which may increase in frequency over time¹

Image courtesy of The Epilepsy Foundation EEG, electroencephalogram

1. Samanta D, Al Khalili Y. Electrical Status Epilepticus In Sleep. StatPearls [Internet]. Available from https://www.ncbi.nlm.nih.gov/books/NBK553167/. Accessed November 16, 2021. | 2. Gencpinar P, Dundar NO, Tekgu H. Electrical status epilepticus in sleep (ESES)/continuous spikes and waves during slow sleep (CSWS) syndrome in children: An electroclinical evaluation according to the EEG patterns. Epilepsy & Behavior. 2016;61:107-11

Patients with EE-CSWS Exhibit Developmental and Cognitive Deficits¹⁻³

Over disease progression, EE-CSWS patient experience:1-3

Neuropsychiatric Symptoms

Early signs of EE-CSWS also include:

Developmental delay Autism-like episodes Declining behavioral and cognitive skills

Early diagnosis is critical to cognitive development

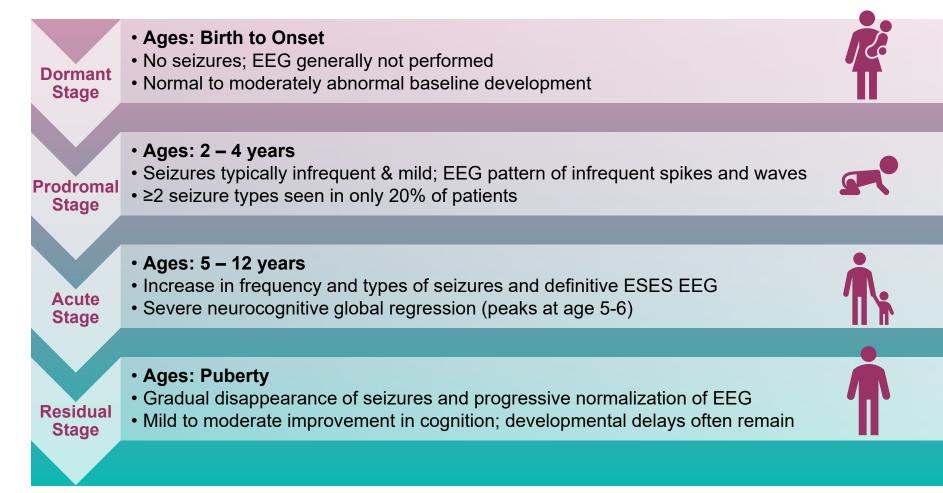
EE-CSWS, epileptic encephalopathy with continuous spike and wave during sleep

1. Samanta D, Al Khalili Y. Electrical Status Epilepticus In Sleep. StatPearls [Internet]. Available from https://www.ncbi.nlm.nih.gov/books/NBK553167/. Accessed February 12, 2021. | 2. Gencpinar P, Dundar NO, Tekgu H. Electrical status epilepticus in sleep (ESES)/continuous spikes and waves during slow sleep (CSWS) syndrome in children: An electroclinical evaluation according to the EEG patterns. Epilepsy & Behavior. 2016;61:107-11. | 3. De Giorgis V, et al. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance. Epilepsy & Behavior. 2017;74:1-9.

EE-CSWS was Designated a Rare Pediatric Disease in 2018 by the FDA

The exact frequency of EE-CSWS is difficult to assess due to differences in inclusion criteria and methods across clinical trials, as well as missed or incorrect diagnoses¹

Accounts for ~0.2-0.5% of all childhood epilepsies²



Higher incidence among **males**¹

EE-CSWS has been associated with structural abnormalities of the brain, as well as genetic variants³

- The ESES EEG pattern is also observed in epilepsy syndromes including Landau-Kleffner syndrome (LKS) and benign pediatric focal epilepsy (also known as benign childhood epilepsy with centrotemporal spikes or benign Rolandic epilepsy)¹
 - LKS is an epileptic encephalopathy associated with ESES in which cognitive regression primarily affects language and speech development, rather than global regression¹

EE-CSWS, epileptic encephalopathy with continuous spike and wave during sleep; ESES, electrical status epilepticus during sleep; FDA, US Food and Drug Administration 1. Sanchez Fernandez I, Chapman KE, Peters JM, et al. Continuous Spikes and Waves during Sleep: Electroclinical Presentation and Suggestions for Management. Epilepsy Res Treat. 2013;2013:583531. | 2. Nieuwenhuis L, Nicolai J. The pathophysiological mechanisms of cognitive and behavioral disturbances in children with Landau–Kleffner syndrome or epilepsy with continuous spike-and-waves during slow-wave sleep. Seizure. 2006;15(4):249-58. | 3. De Giorgis V, et al. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance. Epilepsy & Behavior. 2017;74:1-9

EEG, electroencephalogram; ESES, electrical status epilepticus during sleep

1. Sanchez Fernandez I, Chapman KE, Peters JM, et al. Continuous Spikes and Waves during Sleep: Electroclinical Presentation and Suggestions for Management. Epilepsy Res Treat. 2013;2013:583531. | 2. Samanta D, Al Khalili Y. Electrical Status Epilepticus In Sleep. StatPearls [Internet]. Available from https://www.ncbi.nlm.nih.gov/books/NBK553167/. Accessed November 16, 2021. | 3. De Giorgis V, et al. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance. Epilepsy & Behavior. 2017;74:1-9.

EE-CSWS Clinical Features¹⁻³

There are Currently no Guidelines or Approved Treatments for EE-CSWS

Primary treatment goals:¹

Suppression of EEG
AbnormalitiesImproved Seizure
ControlImproved
Cognitive Function

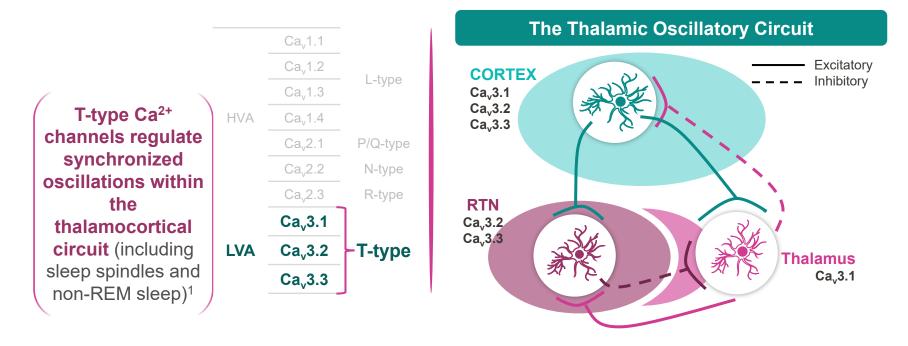
Current treatment consists of traditional ASMs, benzodiazepines, corticosteroids, epilepsy surgery, and other non-pharmacological therapies³

Most Common ASMs: Valproate Levetiracetam Ethosuximide	Effects of Analyzed Treatments on Cognition and EEG in Patients with ESES/CSWS ^{1,2}			
	Treatment	N	Any Improvement	Cognitive Improvement
Some AESs such as phenytoin, phenobarbital, and carbamazepine can worsen seizure control ³	 Conventional ASMs 	310	34%	32%
	BZDs	107	59%	45%
	Corticosteroids	100	75%	70%
	Surgery*	30	93%	83%
	Other	38	58%	71%

*Only indicated for a subset of EE-CSWS patients

ASM, anti seizure medication; CSWS, continuous spike and wake during sleep; EEG, electroencephalography; ESES, electrical status epilepticus in sleep; BZD, benzodiazepine

1. Sanchez Fernandez I, Chapman K, Peters JM, et al. Treatment for continuous spikes and waves during sleep (CSWS): Survey on treatment choices in North America. Epilepsia. 2014;55(7):1099-108. | 2. Kotagal P. Current Status of Treatments for Children with Electrical Status in Slow-Wave Sleep (ESES/CSWS). Epilepsy Curr. 2017;17(4):214-16. | 3. Samanta D, Al Khalili Y. Electrical Status Epilepticus In Sleep. StatPearls [Internet]. Available from https://www.ncbi.nlm.nih.gov/books/NBK553167/. Accessed November 16, 2021.

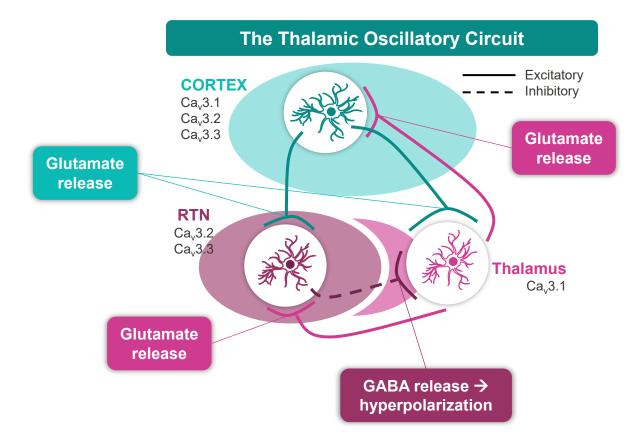


T-type Voltage-gated Calcium Channels and the Thalamocortical Network

T-type Voltage-gated Calcium (Ca_v3.x) Channels and the Thalamocortical Network

Low-voltage activated (LVA) calcium channels mediate low-threshold Ca²⁺ spikes in neurons, leading to burst firing and rhythmic oscillations^{1,2}

LVAs are inactive during regular neuronal firing and thus do not contribute to "normal" neuronal activity

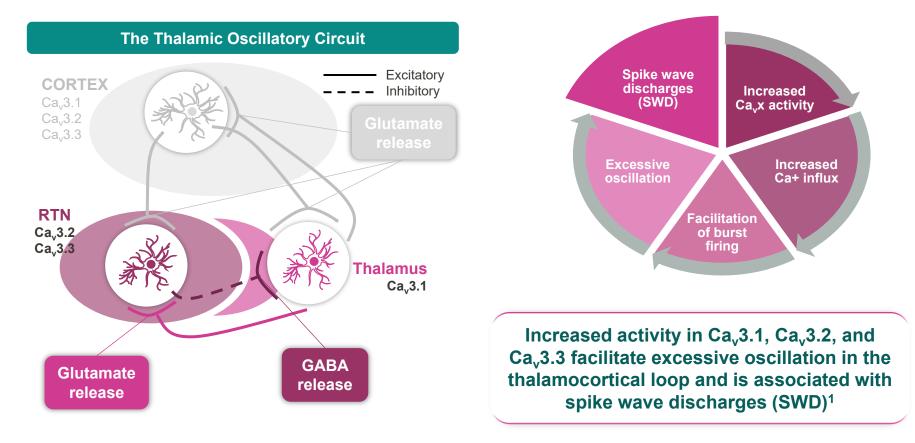


Ca_v, voltage-gated calcium ion channel; EEG, electroencephalogram; ESES electrical status epilepticus during sleep; RTN, reticular thalamic neurons

1. Samanta D, Al Khalili Y. Electrical Status Epilepticus In Sleep. StatPearls [Internet]. Available from https://www.ncbi.nlm.nih.gov/books/NBK553167/. Accessed November 16, 2021. | 2. Chen Y, Parker WD, Wang K. The role of T-type calcium channel genes in absence seizures. Front. Neurol. 2014;5:45.

T-type Voltage-gated Calcium (Ca_v3.x) Channels and the Thalamocortical Network

De-inactivation of T-type channels in the thalamocortical network leads to the generation of rebound burst of action potentials



Ca_v, voltage-gated calcium ion channel; EEG, electroencephalogram; ESES electrical status epilepticus during sleep; RTN, reticular thalamic neurons

1. Samanta D, Al Khalili Y. Electrical Status Epilepticus In Sleep. StatPearls [Internet]. Available from https://www.ncbi.nlm.nih.gov/books/NBK553167/. Accessed November 16, 2021. | 2. Chen Y, Parker WD, Wang K. The role of T-type calcium channel genes in absence seizures. Front. Neurol. 2014;5:45.

ESES EEG is Correlated with Abnormal Thalamic Oscillatory Circuit Activity¹

ESES is due to probable interplay between inhibitory GABAergic reticular thalamic neurons and excitatory glutaminergic dorsal thalamic neurons¹

Ca_v, voltage-gated calcium ion channel; EEG, electroencephalogram; ESES electrical status epilepticus during sleep; RTN, reticular thalamic neurons

1. Fogerson PM, et al. Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations. Neuron. 2016;92(4):687-704.